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Abstract A simple stochastic approach, designed to
model the movement of electrons throughout chemical
bonds, is introduced. This model makes use of a Markov
matrix to codify useful structural information in QSAR.
The self-return probabilities of this matrix throughout
time (SRpk) are then used as molecular descriptors. Firstly,
a calculation of SRpk is made for a large series of
anticancer and non-anticancer chemicals. Then, k-Means
Cluster Analysis allows us to split the data series into
clusters and ensure a representative design of training and
predicting series. Next, we develop a classification

function through Linear Discriminant Analysis (LDA).
This QSAR discriminates between anticancer compounds
and non-active compounds with a correct global classi-
fication of 90.5% in the training series. The model also
correctly classified 86.07% of the compounds in the
predicting series. This classification function is then used
to perform a virtual screening of a combinatorial library
of coumarins. In this connection, the biological assay of
some furocoumarins, selected by virtual screening using
the present model, gives good results. In particular, a
tetracyclic derivative of 5-methoxypsoralen (5-MOP) has
an IC50 against HL-60 tumoral line around 6 to 10 times
lower than those for 8-MOP and 5-MOP (reference
drugs), respectively. Finally, application of Iso-contribu-
tion Zone Analysis (IZA) provides structural interpreta-
tion of the biological activity predicted with this QSAR.

Keywords Markov chain · Molecular design · QSAR ·
Anticancer compounds · Linear discriminant analysis ·
Cluster analysis · Random process

Introduction

The use of so-called Markov’s chains began at the
beginning of the last century (1901). [1] Since this earlier
work after Markov and up to 1960, different applications
of the stochastic process in various fields of science
appeared, including astronomy, physics, biology, and
chemistry. [2] From the 1960s until today, there has been
no decline in this explosion in the use of Markov’s
process. On the contrary, a continuous increase in the use
of Markov’s chains (MCH) theory is expected in the near
future. [3] Some branches of science such as artificial
intelligence, [4] epidemiology, [5] and medicine [6] have
incorporated useful methods based on this mathematical
approach.
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In biological sciences, particularly bioinformatics and
related subjects, the MCH models have proved to be
largely useful. Markov models are well-known tools for
analyzing biological sequence data and have been used in
detecting new genes from open reading frames. [7, 8]
Other uses of these models have included data based
searching and multiple sequence alignment of protein
families and protein domains. [9] Protein subcellular
locations have been also successfully predicted. [10, 11]
Hubbard and Park used amino acid sequence-based
hidden Markov models for predicting secondary protein
structures. [12] In this sense, Krogh et al. [13] also
proposed their hidden Markov model architecture.
Markov’s stochastic process has also been used for
protein folding recognition. [14]

Throughout time, the use of MCH has grown as rapidly
as the particle cascades that they can describe. For
example, MCH are used in quantum mechanics to resolve
the many-electron problem by quantum Monte Carlo
methods. [15] In any case, stochastic processes and
matrices have been present in the foundations of quantum
mechanics from the outset. In 1925, W. Heinsenberg
introduced a quantum system representation, which later
prompted the development of matrix mechanics by M.
Born, W. Heinsenberg and P. Jordan. This representation
describes the transition of the quantum system of particles
(e.g. electrons) from one state to the other using transition
frequencies or probabilities. [16] The probabilistic inter-
pretation of quantum phenomena is a well-established
point of view, also used in the Schr�dinger representation
[16] and density functional theory. [17]

The pharmaceutical industry is also under increasing
pressure to discover new drugs, leading to faster and more
efficient methods than those used in the past. In this case,
molecular modeling and molecular structure codification
techniques have emerged as a promising solution to this
problem. [18, 19, 20, 21] This is the reason why different
molecular descriptors have continuously appeared in the
literature, including topological, informational, graph-
theoretical, quantum mechanical, molecular mechanics-
based molecular descriptors, amongst others. [18, 19, 20,
21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33] A
recently published handbook by Todeschini and Consonni
offered a summary of many of them. [34]

In any case, there is still great interest in the
development of new molecular descriptors. The broad
diversity of chemical structures and biological activities
that it is necessary to correlate by QSAR methods has
been the driving force behind this interest. In particular,
the search of anticancer compounds has always been on
the desktop of molecular modeling and drug design
specialists. In spite of this intensive search, the discovery
of selective antitumor compounds has remained a largely
elusive goal of cancer research. Subsequently, new
approaches are needed in order to make an efficient
search for candidates to be assayed as anticancer drugs.
[35, 36, 37, 38, 39, 40, 41, 42, 43, 44]

However, when chemists try to apply quantum
mechanics calculations to codify useful structural infor-

mation in pharmacological terms, time becomes a limiting
factor. As a result, many simple molecular descriptors are
used to represent molecular structure. The simplicity of
Markov chains as well as their stochastic nature therefore
attracted our attention as a possible source of simple but
physically meaningful molecular descriptors. As molec-
ular descriptors, the authors of this paper understand
simple numerical indices that are used to codify the
molecular structure in Quantitative Structure Activity
(Property) Relationship (QSAR and QSPR) studies. [45]
In a recent paper, some authors of the present paper have
additionally enlarged the limits of applicability of those
molecular descriptors in QSAR. [46] These new ap-
proaches generally loose theoretical rigor (with respect to
physical theories) but gain practical applicability, one of
the starting points in the development of almost every
novel molecular descriptor. [47, 48]

Nevertheless, the use of stochastic matrix formalism as
a source of simple molecular descriptors did not appear in
the literature before 2002. Last year, Gonz�lez et al. used
a Markov chain formalism for the first time to codify
molecular structure towards virtual screening, and ratio-
nal experimental discovery of fluckicidal drugs. [49]
These ideas have been extended to the study of protein
structure property relationships. [50] Recent work report-
ed the generalization of our molecular descriptors to
codify 3D molecular structure without any loss of
theoretical meaning. [51] Therefore, considering all of
the issues highlighted in this introductory section, the
present paper has very specific aims. Essentially, this
paper deals with the QSAR study of anticancer activity of
large and heterogeneous series of organic compounds in
order to continue the validation of SRpk as useful
molecular descriptors. Secondly, the paper intends to
apply the present QSAR for a virtual mining of a
combinatorial library of coumarins to detect more active
leads of this family of compounds. Consequently, those
chemicals predicted with the highest activity will be re-
synthesized and experimentally assayed. Finally, local
calculations of the molecular descriptors will permit
structural interpretation of the model when applying a
simple method we called the Iso-contribution Zone
Analysis (IZA). [46, 52]

Materials and methods

Markovian chemicals “in silico” design (MARCH-INSIDE)

The description we offer in this section constitutes the theoretical
background of a simple but still physically meaningful and highly
flexible model of intramolecular electron delocalization. The model
explicitly codifies molecular connectivity and, at the same time, the
effect of the presence of heteroatoms in electron distribution
throughout the drug backbone. Both aspects appear to be very
important features in QSAR. [53, 54, 55]

Consider a hypothetical situation in which a series of atoms are
free in space at an arbitrary initial time (t0). Alternatively, one may
imagine a more real situation in which, after perturbation by some
external factor, the electrons reach a distribution around atom cores
different to that which they possess in the stationary state. It may
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therefore be interesting to develop a simple stochastic model of the
return of electrons to the original position throughout time. A
model of this type, closely related to molecular structure informa-
tion, could act as a source of novel physically meaningful
molecular descriptors.

Assume that after either of these initial situations, electrons start
to distribute around atom cores in discrete intervals of time tk. By
using MCH [1, 2, 3, 49, 50, 51, 56] it is therefore possible to
develop a simple model of the probabilities with which electrons
move around these atom cores in further intervals of time, until a
stationary electron density distribution appears (see Fig. 1). As
depicted in Fig. 1, this model will describe the probabilities (kpij)
with which electrons move from any arbitrary atom ai at time t0 (in
black) to other aj atoms (in white) throughout discrete time periods
tk (k=1, 2, 3, ...) and throughout the chemical bonds. This model is
stochastic per se (probabilistic distribution of electrons in time) but,
as mentioned above, actually considers molecular connectivity (the
distribution of electrons in space throughout the chemical bonds).

The selection of a Markov chain process is not arbitrary. From
quantum physics, it is well known that, if electrons are labeled at an
arbitrary initial time, one cannot use these labels to distinguish
between them in subsequent moments. This physical fact has been
historically referred to as the principle of the indistinguishability of
identical particles. [16] An MCH-based model of electron distri-
bution around atom cores obeys this principle perfectly, as one of
the main characteristics of MCH is that the probability of
occurrence of an event (electron movement) does not depend on
the previous states of the system (the former atoms from which
electrons came). [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 49,
50, 51, 56] This means that the model does not depend on any
electron labeling.

The present procedure considers the external electron layers of
any atom core in the molecule (valence shell) as states of the MCH.
[49, 50, 51] The method uses the matrix 1P, which has the elements
1pij. This matrix is called the 1-step electron-transition stochastic
matrix. 1P is built as a square table of order n, where n represents
the number of atoms in the molecule. The elements (1pij) of the 1-
step electron-transition stochastic matrix are the transition proba-
bilities with which electrons move from atom i to j in the interval
t1=1 (considering t0=0). The main simplification here, which may
appear to be a drawback but is actually an advantage, is to suppose
that electronegativity quantifies the strength with which the atoms
restore the electrons to their stationary position:

1pij ¼
Icj

Pdþ1

k¼1

Ick

ð1Þ

where Icj is Pauling’s electronegativity of the atom aj, which is
bonded to the atom ai. [49, 50, 51, 57] The elements of 1P (1pij) are
defined to codify information about the electron-withdrawing
strength of atoms to withdraw electrons from their neighbors in
the molecule. We will only use 1P afterwards. Conversely, the pij
values are inversely related to the electronegativity of the atoms
that “compete” with j to withdraw electrons from i. Broadly
speaking, the Markov chain describes the evolution of the system
(the movement of electrons around the atoms in this case) in two
different scales, the “short term” and the “long term”. In the
short-term scale of time (first interval of time, t1�t0=1) the
random movement of electrons is described by 1P, whilst long-
term movements are described by the Chapman–Kolgomorov
equations:

pij tm þ tnð Þ ¼
X

k

pik tmð Þ � pkj tnð Þ ð2Þ

In particular, it is simple to derive the relation kP (kpij)=(1P
(1pij),)k, which determines that the matrices whose elements are the
probabilities with which electrons move from atom i to atom j in
time tk (kpij) are the kth natural power of 1P (1pij). [1, 2, 3, 56, 58]
Figure 2 shows an example for the calculation of short-term
probabilities that will be explained later on in this section.

It does not make any difference if the Pauling scale (Icj) or any
other linearly related scale (IIcj=a·Icj) such as Kier–Hall electro-
negativity [59] is selected. In fact, the present approach is invariant
to the selection of the electronegativity scale:

Fig. 1 Diagrammatic representation of random electron distribu-
tion in a simple Markovian model. The symbol tstationary represent
the stationary time: the time at which electrons reach equilibrium
distribution around atoms

Fig. 2 Definition and calculation of the 1Q matrix for a specific
case. The element symbol is used to denote the value of the element
electronegativity, so for example: F=fluorine electronegativity c(F)
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1pij
IIc
� �

¼
IIcj

Pdþ1

k¼1

IIck

¼
a � Icj

Pdþ1

k¼1
a � Ick

¼
a � Icj

a �
Pdþ1

k¼1

Ick

� �

¼
Icj

Pdþ1

k¼1

Ick

¼ 1pij
Ic
� �

ð3Þ

where the letter a refers to a constant that relates the two scales of
electronegativity. It is also noteworthy that in the present approach
it is not necessary but possible to use electronegativity scales that
distinguish between hybrid states of atoms in bonds. For instance,
sp3, sp2, and sp carbon have the same Pauling electronegativity but
are clearly distinguished in the present approximation (see Fig. 2).
The use of other scales, not only electronegativity related, is
beyond of the scope of the present study and will be considered in
more detail elsewhere. In any case, the use of atom charges, charge
densities, or bond orders calculated using quantum mechanics
methods or semiempirical methods is time consuming, and does not
offer any additional advantage. [49, 50, 51, 60]

The stochastic matrix previously described may be used to
generate numerical indices of molecular structure. Here, we shall
use the sum of the self-return probabilities of the natural power of
this matrix (SRpk). [49, 50, 51] In classical Markov theory, these
numbers are the probabilities with which the system returns to the
initial state. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 56, 58] In
the present context, they are the probabilities with which electrons
return to the atoms at different times after an arbitrary initial
observation time t0.

SRpk Sð Þ ¼
Xg

i¼1

kpii ð4Þ

The kpii are the entries in the principal diagonal of kP matrixes
and S is a group of atoms that compose a chemical group in the
molecule. When S contains all the atoms in the molecule, SRpk(S)
becomes a global molecular index and we write only SRpk. The 0-
step-self-return-electron-transition probabilities to the atom ai (0pii)
are the values of the principal diagonal of 0P =(1P)0=In, where In is
the identity matrix of order n. Therefore, 0pii is, by definition, equal
to 1 for any atom, and SRp0 is equal to the number of atoms in the
molecule. This fact has a simple physical meaning: at time 0,
electrons can do only one thing: obviously, to stay around their
atom with probability 1. The calculation of SRpk for any organic or
inorganic molecule was carried out using the MARCH-INSIDE
software. [61] This software has a graphical interface to make the
chemist’s work easier (see Fig. 3).

In Fig. 2, we exemplify the definition and calculation of the 1P
matrix for nitrilo-acetyl fluoride. This molecule contains five
atoms, thus 0P=I5. Therefore, by definition, SRp0=Tr (0P)=5. The
symbol Tr represents the mathematical operator Trace (sum of the
entries in the principal diagonal of the matrix). [45, 46, 49, 50, 51]
From 1P and 2P we can calculate SRp1=Tr (1P)=2.443 and SRp2=Tr
(2P)=2.143.

In more detail, it is also shown that 1pii varies in the following
order: 1pii(F)=0.615>1pii (O)=0.583>1pii (N)=0.455>1pii(C2)=
0.313>1pii(C1)=0.200. We may conclude that 1pii varies in the
same order as the electronegativity (cF=4.0>cO=3.5>cN=
3>cC=2.5). It is obvious that electrons will have a higher
Markovian probability of returning to the sp carbon (0.313) than
to the sp2 carbon (0.200) despite using the same electronegativity.
This fact is in line with quantum mechanical results, the electronic
density around linear (sp) carbon atoms is greater than in sp2 carbon
atoms, and may have important implications in QSAR. [62] We
may argue this good differentiation of the atoms with different
hybridization if we consider the topological character of 1P. As
shown in Fig. 2, both 1pii(C2) and 1pii(C1) have identical
numerators (cC), but different denominators. This occurs due to
the different “connectivity” of the two atoms, i.e., C1 is connected
to O, F, and C2 while the C2 atom is bonded to C1 and nitrogen.

We may therefore assert that the molecular indices (SRp0)
calculated by MARCH-INSIDE codify both electronic and topo-
logical information about molecular structure. In future papers, we
will discuss this issue in more detail.

The use of the symbol Tr clearly shows that the present
molecular descriptors are formally the spectral moments of kP.
Spectral moments of other structural matrices have also been
studied in the chemical literature over a long period, in diverse
chemical contexts. [63, 64, 65, 66, 67, 68, 69, 70, 71]

Statistical analysis

Continuing from the previous section, we can try to develop a
simple linear QSAR using MARCH-INSIDE methodology using
this general formula:

ACA ¼ bþ bSR
0 P0

þ bSR
1 P1 þ bSR

2 P2 þ :::þ bSR
k Pk

ð5Þ

Here the structure is represented by the molecular indices SRpk and
the activity (anticancer activity in this case) by the variable ACA
(acronym of anti-cancer activity). This is a dummy variable,
ACA=1 for anticancer compounds and ACA=�1 for the non-active
compounds. In Eq. (5) bk are the coefficients of the classification
function, determined by least squares, as implemented in the Linear
Discriminant Analysis (LDA) module of STATISTICA 6.0. [72]
Forward stepwise was established as the strategy for variable
selection. [72, 73, 74, 75, 76]

To develop the QSAR for anticancer/non-anticancer compound
discrimination, we use the first 11 SRpk as molecular descriptors.
The quality of the model was determined by examining Wilks’ l
statistic, Mahalanobis distance, the percentage of good classifica-
tion, and the proportion between the cases and variables in the
equation. Calculating the percentages of good classification in the
external prediction series allowed the model to be validated.
Compounds in the external prediction series were never used to
develop the classification function.

Here we considered general data for 961 organic chemicals that
contain almost all of the anticancer chemicals reported by Negwer
in its large database. [77] All the cases were processed using k-
Means Cluster Analysis (k-MCA) in order to design predicting and
training data series. Firstly, we carried out a k-MCA1 with the
active compounds and later another, k-MCA2, using the inactive
compounds. Anticancer and non-anticancer training series were
selected at random (214 active and 467 inactive compounds). The
remaining sub-series was used as an external prediction series,
containing 84 anticancer and 196 non-anticancer chemicals.
Figure 4 graphically illustrates this procedure.

Fig. 3 Representation of coumarins’ basic core in MARCH-
INSIDE interface
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The k-MCA was carried out with the same software as LDA, but
using the k-MCA module. For acceptable statistical quality of data
partition in clusters, we took into account the number of members
in each cluster and the standard deviation of the variables in the
cluster (as low as possible). We also inspected the between SS and
within SS (Standard deviation between and within clusters), the
respective Fisher ratio and their p-level of significance considered
to be lower than 0.05. [78, 79]

Iso-contribution zone analysis (IZA) and MARCH-INSIDE

In order to calculate the total atom contribution to anticancer
activity in the current approach, we make use of the decomposition
of total molecular descriptors into local descriptors. More specif-
ically, we decompose the total molecular descriptors into atomic
descriptors of the atom in the molecule. For example, the molecular
descriptors of chloroform may be decomposed as follows:
SRpk(HCCl3)=SRpk(H)+SRpk(C)+3SRpk(Cl). Afterwards, the values
of the atomic descriptor for each atom are substituted in the QSAR
equation, obtaining the contribution of the atom to anticancer
activity. Estrada and Gonz�lez have recently explained this
procedure in detail for bond spectral moments. [46]

A step forward in this regard was offered by some of the authors
of the present paper, by regrouping all positive (negative)
contributions in order to obtain a picture that maps the molecular
regions with positive or negative contribution to the property. The
method, called Iso-Contribution Zone Analysis (IZA), is general for
any molecular descriptor, defined a priori as a sum of local
descriptors, at least for linear QSARs. [52] The main importance of
IZA is that it offers a clear and direct interpretation of results in
structural terms. Here we adapt an IZA approach to MARCH-
INSIDE and LDA methodology. The present study is aimed at the
selection of novel drug candidates for synthesis. Then, we select the
different structural synthetic blocks of the molecules as molecular
regions for the IZA. As LDA predicts the probability of action, we
preferred to standardize all of the contribution in order to express
them as the percentage of activity that each group accounts for.

Biological activity

Cell cultures

Human Myeloid Leukaemic Cells (HL-60) were grown in RPMI
1640 (Sigma Chemical Co.) supplemented with 15% heat-inacti-
vated fetal calf serum (Seromed). Human Cervix Adenocarcinoma
Cells (HeLa) were grown in a nutrient mixture F-12 [HAM] (Sigma
Chemical Co.) supplemented with 10% heat-inactivated fetal calf
serum (Seromed). Up to 100 U ml�1 of penicillin, 100 mg ml�1

amphotericin B (Sigma Chemical Co.) were added to the media.
The cells were cultured at 37 �C in a moist atmosphere of 5%
carbon dioxide in air.

Inhibition growth assay

HL-60 cells (3�104) were seeded into each well of a 24-well cell
culture plate. After incubation for 24 h, various concentrations of
the test agents were added to the complete medium and incubated
for a further 72 h. A similar treatment was used for HeLa cells (see
for instance [80]). A trypan blue assay was performed to determine
cell viability. Cytotoxicity data were expressed as IC50 values, i.e.
the concentration of the test agent inducing 50% reduction in cell
numbers compared with control cultures. UV sample irradiation
was performed using a Philips HPW 125 (365 nm). The intensity of
radiation (14.075 mW cm�2) was determined with a Cole–Palmer
radiometer (model 97503-00). All chemicals (analytical degree)
were purchased by the Department of Organic Chemistry in the
Faculty of Pharmacy at the University of Santiago de Compostela,
Spain.

Results

The k-MCA was used in the design of training and
predicting series. It allows us to design both training and
predicting series that are representative of the entire
“experimental universe”. We first carried out a k-MCA
with 298 anticancer compounds and afterwards with 663
non-anticancer compounds. The first analysis yielded
clusters of active compounds and the second the same
number of clusters of non-active compounds. The vari-
ables SRp0 to SRp3 were used, with all variables showing
p-levels of <0.05 for the Fisher test. The results are shown
in Table 1.

Once the random and representative selection of
training series is carried out, it is possible to fit the
discriminant function. The QSAR-LDA model selection
was subjected to the principle of parsimony. We then
chose a function with high statistical significance, but
with as few parameters (ak) as possible: [81]

Fig. 4 General algorithm used
to design training and predict-
ing series
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ACA ¼ 3:032SRp0 � 49:519SRp1 þ 126:634SRp2 � 165:795SRp4

þ 215:591SRp8 � 128:236SRp10 � 6:579

N¼ 681l¼ 0:443F¼ 141; 31 D2¼ 5:841p< 0:00 ð6Þ
Here, l is Wilks’ statistic, which for overall discrim-

ination takes values in the range from 0 (perfect
discrimination) to 1 (no discrimination). Comparison
between Mahalanobis distance (D) and Fisher ratio (F)
allows us to check the hypothesis of separation of groups
with a probability of error (p-level) of p< 0.05.

This model correctly classified 90.5% of the com-
pounds in the training series, i.e., 65 misclassifications in
681 cases, while in the predicting series there were 39
errors in 280 cases, i.e. 86.1% of good classification.
More specifically, the model correctly classified 90.2% of
anticancer compounds in training series and 84.5% of
these compounds in predicting series. The classification
results and the names of each anticancer compound used
in both training and predicting series are shown in
Tables 2 and 3.

In these tables (2 and 3) and the others, DP%=[P
(actv)�P (non-actv)]�100, where P (actv) is the a
posteriori probability with which the model classifies a
compound as active. Conversely, P (non-actv) is the a
posteriori probability with which the model classifies a
compound as non-active. This value (DP%) takes positive
values when P (actv)>P (non-actv) and negative other-
wise. Therefore, when DP% is positive (negative) the
compound was classified as anticancer (non-anticancer).
When DP% was in the range �5<DP%<5 the compound
was considered as unclassified. A P(actv)x100 value
higher than 50 is considered as a threshold limit to
classify a compound as highly active, although we prefer
to use a stronger criterion, DP%>50%. [49, 50]

Elsewhere, the model correctly classified 90.6% of
non-anticancer compounds in training series and 86.7% of
these compounds in predicting series. The classification
results and the names of each non-anticancer compound
used in both training and predicting series are shown in
Tables 4 and 5.

Our research groups have been involved in the in vitro
search for anticancer compounds. [80] Special emphasis
has been given to the search for n-methoxypsoralen (n-
MOP) derivatives. [82, 83, 84] In order to test the potential
of MARCH-INSIDE and LDA for detecting novel anti-
cancer leads, we predicted the biological activity of all the
chemicals contained in a combinatorial library of cou-
marin derivatives. The library contains drugs-like chem-
icals with the most common substituents in medicinal
chemistry, [85] attached at all positions of coumarins’
core, as well as condensed cyclic derivatives. We then
selected a group of four chemicals (see Fig. 5), among
those with higher probability of anticancer action, to be
tested in an in vitro antiproliferative assay (see Table 6).

Finally, we applied IZA in order to carry out an
interpretation of the classification function in structural
terms. The IZA picture for one anticancer compound is
depicted in Fig. 6. As was explained in the Materials and
methods section, zones shown in black (shown in white)
are those that have a negative (positive) contribution to
anticancer activity.

Table 1 Results of the
K-Means cluster analysis

Anticancer compounds

Cn/Nca 1/108 2/85 3/62 4/43 Global cluster statistical analysis

Variables Standard deviation of clusters SSbb SSwc Fd Pe

SRp0 4.43 3.47 4.18 6.97 54112.9 6213.9 853.4 0.00
SRp1 1.45 1.14 1.32 2.34 5400.3 669.1 790.9 0.00
SRp2 1.09 0.82 0.93 1.80 2685.2 371.1 709.0 0.00
SRp3 0.98 0.72 0.80 1.60 1988.0 293.2 664.5 0.00

Non-anticancer compounds

Cn/Nca 1/262 2/173 3/157 4/71 Global cluster statistical analysis

Variables Standard deviation of clusters SSbb SSwc Fd Pe

SRp0 5.11 2.49 2.89 3.41 70009.6 9992.6 1539.0 0.00
SRp1 1.62 0.76 0.90 1.05 6428.3 991.6 1424.0 0.00
SRp2 1.13 0.53 0.64 0.76 2993.8 487.9 1347.9 0.00
SRp3 0.96 0.45 0.56 0.66 2153.1 356.6 1326.2 0.00

a Cn/Nc=cluster number/number of cases in this cluster
b SSb=SS between
c SSw=SS within
d F=Fisher ratio
e P=signification level
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Discussion

Due to differences in the composition of experimental
data and the method used in carrying out the QSAR, it is
not feasible to carry out a comparison between the models
reported in the literature for the selection of anticancer
compounds. In fact, almost all-anticancer activity QSARs
are based on homologous series (specific families) of
organic compounds. [35] In any case, for screening
purpose it is obviously more useful to use comparable
data obtained by general and not class-specific models. In

addition, the chemical classes of the training compounds
limit the applicability domain of the above-mentioned
models. [86] We then selected a previous model reported
by our group using the TOPS-MODE approach. [87] The
selection is based on the use of LDA as a method for
deriving the QSAR, the important diversity of chemical
structural patterns contained in the data, and the use of the
same source for collecting the data.

The percentage of false actives obtained in the training
series was higher than that reported for the TOPS-MODE
approach. The previous study reported a 5.0% of false

Table 2 Results of discrimi-
nant analysis for anticancer
compounds in the training se-
ries

100�DP%a>99

EMDAI Azotomycin Diaziquone Meturedepa AB 100
Nannosulfan Spergualin Crotepoxide Mitoxantrone Benzodepa
Etoglucid Dehespamine Sibiromycin Estreptozocil Rufocromomycin
Dipin Magnnityl Dimesilate Diazan Neplanocin c Hexaphosphamid
Mesyldegranol Mannomustine Aphoxide Asalei Psicofuranine
Inproquone triaziquone AB-182 Hexestrol (PO4)2 Asaline
A-139 Ketotrexate Azaserine Mitobronitol Rabdophillin G
Fotetramine Pidorubucin Teralphezin Tretamine Stibostat
Alazopeptin Rutin-N-Mustard Pteropterin Chlorozotocin Fludarabine
Cervicarcin Tetracicline Carboquone Bactobolin Methopterine
Amygdalin Hesperidin Idarubucin Toromycin Astiron
Medorubicin Pactamycin Solafalmitin Menogaril Leatrile
Dauronobicin Withaferin A AT-16 A-Ninopterin

99�DP%a>90

Lomenin-2 Eupochlorin acetate Prosfidium chloride OPSPA Sangiuamicin
Dimetfolamide Benzotef Fosfemid Irisquinone A Benaxibine
Duazomycin Aminopterin Chlorbutifenicillin ODEPA Disulfbumide
Fluorbensotef Diiodbenzoteph Amino Anfol Porfiromycin Estramustine
Metamelfalan Aminotreofol Phansazin Estramustine PO4 Lysopsin a
Mitopodozide Hexadepa Uramycin Amebisan Defosfamide
Ambunol Dinaphtimine Pirabofurin Cleisthathin Triciribine
Bremfol CAM Chlorasquin Fludarabine Cytaracid
RPCNU Ditiomustine Fluorasquin Leucodelphinidin Phenamet
M-83 Mitomycin Thioguanosine Araside
Octostanolon Methasquin Nitrocafan Ara-T
Diethylstilbestrol (SO4)2 Acetoxycycloheximidine
90�DP%a>60

Fentirin Citarabine Asperlin Hisfen Trimetrexate
Thioinosine Benzolide 2-AA Lofenal CB-10252
Formicyn Fluoromezin Osayin Ocaphane Chlorambucil
Alalon IDA Merophan Damuar Fenastezin
Lysopsin b Bututricin Piposulfan Fluorafur GEA-29
Azazipidine Aldophosphamide Drostanolone Asazol Forfenimex
Isopropylcad Glutacyt Thiazofurine Promicil V-100
CB1837 Sparzomycin Dichloroallillawsone Dimezol Blueidon
Butastezine Hidroxycicloheximide Butoctamide Athoxen Nifuron

60�DP%a>5

Sparzomycin Busulfan Doxifluridine Butodicin IOB-177
Spirazidin Ac. Mycophenolicum Juncusol Cyanocyline A Genirin
BA1 Piritrexim Alanosine Flurocitabine Neptamustine
Bufloracil Chlorphenacil Angustibalin Piperazinedione Lumostine
Nimustine Cafencil Spiromustine Semustine
Ripazepam Trestolone acetate

Misclassified compounds (�5�DP%a)

NSC-83265 Tylophorine Leucenol QFI Nitracine
Burseran Oxymatrine Homocoralyne NSC-95466 Enterolactone
Testolactone Leukogen Vinervine Butocin Zimet 54/79
Benzatine Aceglatone Bimolane Spirogermanium Bisantrene+A239
Laveldamycine Peucedanin

a See explanation in the text
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Table 3 Results of discrimi-
nant analysis for non-anticancer
compounds in the training se-
ries

�100�DP%a<�95

Phenindamine Naphasoline Clotiapine Phensuximide Fluperlacine
Kepone Brosuximide Clozapine Mianserin Dichobenil
Mirex Dichlone Acetanilida Phenmetrazine C-56
Aldrin Isobenzan Tetrahydrozoline Chlordane Lofemizole
Tetrachlorothiophene Amoban Parathiazine Pyrazon Antipyrine
Selectan Morestan Pyrathiazide Azanator Chorcyclizine
Pentachlorophenol Phenindione Amitrole Cycliramin Naftoclizinum
p-Dichlorobenzene Fenharmane KB1043 Diphenylhidantoin Dyrene
Phenothiazine Chloranil Phenylhidrazine Methdilazine CBZ
Dehydroclothepine Strycnine S. 131 Ammonium sulfamate

�95�DP%a<�90

Perathiapten CyElizine Arecoline Metasuximide Anphetamine
Phensoximide Foeirtoline Ovex Dibenamine Pargyline
Monuron Fenuron Zotepine Paracetamol Cinromide
Zoxazolamine Tetradifon Mycocid Linuron Methylene blue
Acetophenetidine Meclizine Picartamide Caffeine AB 41
Metazide Diuron Benzoctamine Metacetamol Naranol
Chrordiazepoxide. Ethyllisergamide Metipirox Desipramine Acrolein
Iniazid Ethosuximide Heptauerine Prothixene Metaxalone
Methan sodium Pyroxamine Nicotafuryl Phenacemide
Antu LD2855 Folpet Tiquinamide
Desmethylprothiaden Naphtalene Acetic Ac.

�90�DP%a<�85

Methoilazine Amezepine Tifemoxone Emorfazone MCP
Clorprothixene Chlorphenacemide Sulfanilamide Bromoxynil Pentylenetetra-

zol
Tolexantone Maneb Pentanal Midamaline Stenofril
TDE Prochlorperazine 4-aminophenasone Mephenoxalone Serotonin
Mexamin Imidan Ethenzamide pyrolan Paracrofamol
Tolindate Methanphetamine Bromamide Prooxen Equilenin
SU-7692 Brusine Nikethamide Aezulanum Isocarboxazid
Genite Glycopyramide Allisan L11204 Glutethimide
Methapyrilene Amethobenzepine Dichloran Tripelennamine Methetoin
Fantridone IB 503 Clomacran PO4 Trimethadione

�85�DP%a<�80

Sulfapyridine Demexiptiline B 777-81 Banol Thiogin
Salicylamide Clodazon Metaclazepan Butylparaben Isotiquimide
Hydrastinine 2,4,5-T Sulfadiazine Orphenadrine

citrate
SOG-18

Doxofylline Thebaine Fluoroacetate Phenylbutazone Sulfacetamide
PRL 8–53 DDT Dibrosalicyl amide Fosazepam Chlomethizole
Difencloxazine Oxyphemedazol Cycloterenol Tolpropamine Arcylate
Etofuradine Chrormezanone Heliofilm Mephenoxalone Methapyrilene

2.4-D. Thiadrine Primidone Dalapon Diethazine
Methamilane Ioxynil Captan Paramethadione Chlordinezin
Benzamsulfonium Mephentermine Pirprophen Diclonixin

�80�DP%a<�70

Diethazine Lindane CIPC HCA Haloperidol
Sulfinpyrazone Dexon Epirizole Acepromacine Herbisan
Isothipendyl. Dacthal Pibenzepine Promazine Pipradrol
Cycrimine. BW775C Barbital Carbophenithion Beztiacide
Acetergamine Neburon Silvex Dimethoate Dimetilan
Thimerosal Chlorothen citrate Hydrochlorotyazide Mesocarb Phenyramidol
Equilin Metofurone Picloram Meflophen-

hidramine
Trenbolone

Ziram Ronnel Solan Almoxatone
mesilate

Ectylurea

Trichloroethanol Hydrocodone Dimezin Acylmidrazone Vorhexobarbital
Alimemazine Aminopyrine Cyclopentamine Diethylglycyl phenothiazine

�70�DP%a<�60

Cyclobarbital Simazine LY 125180 Mecloralurea Difenbutamine
Pheneturide Bifemelane Neurodin Iproclozide Apazicin(A)
Crotamiton Sulphaethylpirazole Metharbital T28 Thebaine
S1688 Duraseries Bou-14607 Ciglitazone 2.4-DB
Orphenadrine Atrolactamide Ethylmorphine. Ac. Nicosali-

cylicum
Matacil

Ro 11–4337 Pyrilamine Giareg Bromaspirin Pectol
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actives, while our present model misclassifies 9.5% of the
compounds in the training series. Both values are
generally very good, if we consider the broad spectrum
of chemical structures, although we should remember that
the model reported here uses a data series three times
larger than that used in the former, i.e., 681/224
compounds. Another important factor is the results of
the classification in predicting series with regard to
training series. It is reasonable to expect some decrease in
overall predictability of predicting series with respect to
training series for a simple reason; the model is developed
to fit the points in training series, and therefore data points

in predicting series are never used to develop it. Our
previous model [87] has shown higher classification
percentages in predicting than in training series. It could
be determined by a not exactly random selection of both
series. In the present work, the use of k-MCA to design
training and predicting series effectively overcomes this
problem. In any case, the results in predicting series fully
validate both models, for practical use, from a statistical
point of view. [88]

As previously indicated, our research groups have
mainly worked on trial-error searching for anticancer
compounds. [80, 82, 83, 84, 87, 89, 90, 91] At the same

Table 3 (continued)
Thonzylamine Ceresanim Salycilic acid Zingeron Amendol
Phorate Nialamide Methyl demeton (B) Biperiden Carbromal
Aclu Difolatan Nitrofurazone Ferban Promethazine
Meperidine Dichrorphenamine Perthane CP15525

NH2Phenylamidophenazone

�60�DP%a<�40

Dilan Phenyl-
propanolamide

Uracil mustard Nitrofurylen Isolan

Neostigmine Br Dimazenum Dicofol Phenacaine Lidocaine.
Podilfen Sulfadicramide Sesone Disulfoton Baygon
Estrone Heptabarbital Ametryne Randox Ephedrine
Physostigmine Reseran 13 EF-525 Moxastine Dursban
Carbachol Piperalin Ethoheptazine Metopon F-28
Mefenamic Acid Bromocyl Mescaline orthouanizide Vinbarbital
Votracon Xenyhexenic Acid Dimethisoquin Anitrazafen Imipramine.
Levallorpran Chlorphenoxamine Embramine Zectran Doxilamine
EpTAM Morphine Chlorobenzilate Alclofenac
Mepivacaine MGK repellent 11 Oxyphenbutazone Brindoxime
Succinic acid 2,2 dimethylhydrazide Pyrilamine maleate

�40�DP%a<�10

Zytron Warfarin Nitroxazepine Allobarbital Chlorphenesin
Tolazamide TR 35 Hexacaine EPN Amobarbital
Dyclonine Dimethoxanate Mepensolate Cocaine Dibatod
Pipazethate Prilocaine Heroin Tricyclamol Aminoprofen
Bisacoryl Temik Trifluoperazine Arsthinol Atratone
Coumachlor Vernam Migyl Oxabrexine Diampromide
Thionazin Phenoxybenzamine Homo-Pas Dasanit Methoxychlor
Papaverine Pebulate Methyclothiazide Hydroxizine Piperidolate
Dyclonine Buclosamide Metaraminol Butaverine Bupiracaine.
Diphenizin Metochalcone Meparfynol Fludorex Chlorthion
Oxomezazine Cycloguanil Norclostebol Synafinamide Chrorphenesin

�10�DP%a��5

Propiomazine Disulfiram Piperocaine Hexylcaine Homococaine
Thiopental Phenadoxone Bufivacaine Hexobarbital

Misclassified compounds (DP%a<5)

Aminoteropterin Isoproterenol Chloranbucil Amedin Nitrendipine
Carisoprodol Methohexital Acetylcarsonobenzol Polytiazide Colchicine
Butacaine SO4 TABAC Alifedrine Flumethyazide Picrotoxin
TU 399 Ciamexon Dihydroergotamine Carazolol Pentapiperide
Dibucaine Probenecid DEF Morphine Glicerothiazol
Isopentaquine Mariptiline Prometone Bishidroxycouma-

rina
Procaine

Meprobamate Caramiphen Diphenhidramine Oxymetazoline Rexamid
Atropine Naepaine Aminohexan Fluoroquine Prometryne
Talbulal Choumaphos Propazine Gobab+A286

Non-classified compounds (�5<DP%a<5)

Lilly 51641 Clofencilan Carbutamide Demeton-O ASA
Chroroquine PO4 Cefaloram

a See explanation in the text
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time, virtual screening (based on QSAR techniques) has
emerged as an interesting alternative to high-throughput
screening. [19, 87, 92, 93] Here we perform “in silico”
mining into a combinatorial library of coumarins looking
for novel anticancer compounds by using the discriminant
function obtained through the MARCH-INSIDE and LDA
methodology. The results shown in Table 6 exemplify
how the present approach could be used for the selection
of possible anticancer drug candidates. All chemicals in
this table were predicted with DP%>90. This table shows
the results of the “in vitro” tests for these coumarins and
two control drugs. In general, psoralens (linear furo-
coumarins) have been mainly known as UV-light-acti-
vated antiproliferative compounds. [94] In particular, both

the UV-induced or in-darkness activity of 8-MOP has
been the subject of increased research interest. [95] As
shown in Table 6, both psoralens (1,2) presented similar
to higher activity than 8-MOP and 5-MOP in the presence
of UV light. It is noteworthy that both compounds 1 and 2
also have antiproliferative activity in the darkness. In any
case, chemical 1 had the highest activity. It is interesting
to note that both chemicals present the –O(CH2)3N(CH3)2
substituent. Our group has recently discussed the favor-
able effect over biological activity of this group in other
families of compounds. [80] Furthermore, other authors
have reported the use of this structural pattern as a linking
functions (–(CH2)2N(CH2)2–) to increase the biological
activity of anticancer compounds. [96]

Table 4 Results of discrimi-
nant analysis for anticancer
compounds in the predicting
series

100�DP%a>95

Teroxirone Lonin 4 Ritrosulfan Pumitepa Mitolactol
Thiodirin Ganu Denopterin A-Denopterin Thiohexadepa
Diopterin Epipropidine Etofoside Triciribine PO4 Loglutam-2
Iremycin Euparotin acetate Ederpin Bufumustine Asamet
GYKI 13324 Elderfiel pirimidine Azatepa Calcii Mefolinas Methotrexate
Holacanthone Cytochalasin B Asdofan Don 1954CD
Esorubicin Ribofrine Ac. Sparfosicum Benzodet Trichodermin

95�DP%a80

Quinaspar Gliocadic Acid Fenafan Neplanocin Inprosulfam
Marcophan Phenaline Nicosin Bendamustine Magestrol
Indicine N-oxide Aethimidinun 3-Deazaguanosina C61 Calusterone
Enterodiol Aminochlorambucil Aminoalanfol 8-MOP Dopastin

80�DP%a10

Triazinate G-azauridine Trophosphamide Demecolcine Auxitabine
Sulfofamide Alkyron Elmustine Aziprin IMET-3995
Alanine Bustard Citostal Macaine Phenester

Non-classified (5�DP%a��5)

IMET-3106 Metfol-B Pseudourea

Misclassified (�5 5>DP%a)

Mitoguazone Coralyne chloride Azathioprine m-Embitol CRC-7001
Enpromate o-Embitol p-Embitol Albonoursin Hainanolide
CGP-15720 BRL-51308

a See explanation in the text

Fig. 5 Chemical structures of the assayed chemicals
Fig. 6 IZA of compound 1
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The IZA (Fig. 6) of 1 coincides with the facts detailed
above. The psoralenic core accounts for the higher
proportion of activity in the molecule (28.5% in 1). On
the other hand, the insertion of the –(CH2)3N(CH3)2–
group in the molecule increase the activity too (38.6%). It
was previously discussed that the present group may
increase either drug solubility or DNA-linking properties
with the subsequent increase in activity. [80, 96] What-
ever the case, the psoralen structural feature has an

important positive contribution to activity in both cases.
Based on the premises of the present model, this indicates
that the movement of electrons in the psoralen system is
largely determinant for anticancer activity. This interpre-
tation is in agreement with numerous experimental results
that have made it possible to postulate a covalent DNA–
psoralens interaction, which determines the photobiolog-
ical activity of psoralens. [97, 98, 99]

Table 5 Results of discrimi-
nant analysis for non-anticancer
compounds in the predicting
series

�100�DP%a<�90

Maleic hidrazide Strinoline Mebicar Oxazepam Methaqualone
Diphenyl Azamianserin Dimemorphan PO4 Oxasepam Carbaryl
Deximafen Loxapine Praxadine Ciclopramine AcKet
Heptachlor Pyrantel Aethosucxinid Dicryl Metane arsonate
Dimethylsulfoxide Chlorbenside Metacetanilidum Sirmate Fenac
Nicotine Sweep Ethotoin Metasuximide Bemegride
Basedol Histamine

�90�DP%a<�80

Mephenytoin Thiram Thenyldiamine Hydrocodone SNF 70948
Indopan Mezepine Vinconate Phenobarbital Promethazine
A 29 Lundbeck VOFP-12392 Sulfathiazole Methyl salicylate Dimefox
Methyl Trithion Molinate Amiben Azaprocin Apomorphine
Zineb Deoxyestrone Furazonal Diclofenac

�80�DP%a<�70

Eusolex 8020 Tandamine Zenbromal Picloram Dicamba
Chorothiazide Trimeprazine Bromacil Dibenzepin Oxadimedine
AL-1965 Barban Proquazone Mesurol Vegadex
IPC Diethil carbazine Paraidehyde BT 132 Merck Brosotamide
Salinazid Beloxamide Tripelennamine LSD Clormecaine

�70�DP%a<�50

Tranilcypromine Dieldrin Metifenazone GC-6,506 Codeine
Diamide Methanarsonate Asa Dalapon salt Isometheptene
Methopromazine Methanarsonate Ac. Rodocaine Nabam Brofezil
Nonaferone m-Methoxythioaceta-

zona
Phenkapton Nalidixic acid Ro-Neet

Guayacol p-Methyldiphenhy-
dramine

Alanap Tizolemide Heptabarbital

Pinafide Phenthimentonium Endrin Sulfaguanidine Oxycodone
Sytramate Doxapram Nemacide KF 1492 Phenilephrine

�50�DP%a<�30

Benzazetin Sulfamethizole Bisacoryl Sulfatroxazole Medrylamine
Methyl demeton (A)Racefemine Sulfadimethoxine Warfarin Glibornuride
Codein Chloral hidrate Closiramine Sulfisoxazole Sulfamoxazole
B-Aminosalicylic Brodimofrin Atrazine Anot Dihydrocodeine
Metopon Chrormerodrin Sulfaforazole Sulfatriazine Fostedil

�30�DP%a<�5

Pronilide Captodiamine DDVP Vraton Cibenzoline
Clocanfamide Rotenone Ethamivan Dienestrol Cyclomethycaine
Valnocyamide Fenetylline Felodipine Tetracaine Thiolactomycin
Methyldesorphine Methyl parathion Methonalide Aprobarbital MCN-2840
Procaine Triflupromazine Bupiracaine Aspamin A Quinidine sulfate

Non-classified (�5�DP%a<5)

Ethinamate Trichlormethiazide Naled Atolide

Misclassified (DP%a<5)

Thiphenamil Succinylsulfathiazole Thiopental Carbetapentane K4423
Eunesine Phtalylsulfathiazole Pentaquine Fluphenazine 2,4 DEP
Diethylstilbestrol Meparfynol carbamate Methocarbamol Tiodazosin Methadone
Phenaglycodol Hydroxichloroquine Pentobarbital Pipenzolate Br Emetine
Pramoxine Trimethobenzamide Di-Allate Cefaloglycin Valethamate Br
Diclofurime mesilate

a See explanation in the text
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In conclusion, the development of more timely and
flexible theoretical methods will lead to a new age of vir-
tual drug discovery. [100] In this context, we may assert
that the MARCH-INSIDE methodology offers a novel op-
tion for developing anticancer discovery directed QSAR in
a fast and efficient way. The definitions given here could
be generalized to other biological activities in order to
extend the applications of MARCH-INSIDE. It is impor-
tant to emphasize that this approach, together with several
others, could be interpreted in structural terms using IZA.
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